Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations

نویسندگان

  • Uri M. Ascher
  • Raymond J. Spiteri
چکیده

Implicit-explicit (IMEX) linear multistep time-discretization schemes for partial differential equations have proved useful in many applications. However, they tend to have undesirable time-step restrictions when applied to convection-diffusion problems, unless diffusion strongly dominates and an appropriate BDF-based scheme is selected (Ascher et al., 1995). In this paper, we develop Runge-Kutta-based IMEX schemes that have better stability regions than the best known IMEX multistep schemes over a wide parameter range. © 1997 Elsevier Science B.V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit-explicit Runge-kutta Schemes for Stiff Systems of Differential Equations

We present new implicit-explicit (IMEX) Runge Kutta methods suitable for time dependent partial differential systems which contain stiff and non stiff terms (i.e. convection-diffusion problems, hyperbolic systems with relaxation). Here we restrict to diagonally implicit schemes and emphasize the relation with splitting schemes and asymptotic preserving schemes. Accuracy and stability properties...

متن کامل

Design and Implementation of Predictors for Additive Semi-Implicit Runge--Kutta Methods

Abstract. Space discretization of some time-dependent partial differential equations gives rise to stiff systems of ordinary differential equations. In this case, implicit methods should be used and therefore, in general, nonlinear systems must be solved. The solutions to these systems are approximated by iterative schemes and, in order to obtain an efficient code, good initializers should be u...

متن کامل

Semi-Implicit Runge-Kutta Schemes for non-autonomous differential equations in reactive flow computations

This paper is concerned with time-stepping numerical methods for computing stiff semi-discrete systems of ordinary differential equations for transient hypersonic flows with thermo-chemical nonequilibrium. The stiffness of the equations is mainly caused by the viscous flux terms across the boundary layers and by the source terms modeling finite-rate thermo-chemical processes. Implicit methods a...

متن کامل

On High Order Strong Stability Preserving Runge-Kutta and Multi Step Time Discretizations

Strong stability preserving (SSP) high order time discretizations were developed for solution of semi-discrete method of lines approximations of hyperbolic partial differential equations. These high order time discretization methods preserve the strong stability properties–in any norm or seminorm—of the spatial discretization coupled with first order Euler time stepping. This paper describes th...

متن کامل

GPU Implementation of Implicit Runge-Kutta Methods

Runge-Kutta methods are an important family of implicit and explicit iterative methods used for the approximation of solutions of ordinary differential equations. Explicit RungeKutta methods are unsuitable for the solution of stiff equations as their region of stability is small. Stiff equation is a differential equation for which certain numerical methods for solving the equation are numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003